Umweltproduktdeklaration (EPD) gemäß ISO 14025 und EN 15804+A2

Innenraumakustikplatten aus Hanf

Registrierungsnummer: EPD-Kiwa-EE-000464-DE

Ausstellungsdatum: 03.11.2025

Gültig bis: 03.11.2030

Deklarationsinhaber: Naporo Klima Dämmstoff

GmbH

Herausgeber: Kiwa-Ecobility Experts

Programmbetrieb: Kiwa-Ecobility Experts

Status: verified

1 Allgemeine Informationen

1.1 PRODUKT

Innenraumakustikplatten aus Hanf (Hauptprodukt: unlackiert; lackierter Variante optional verfügbar)

1.2 REGISTRIERUNGSNUMMER

EPD-Kiwa-EE-000464-DE

1.3 GÜLTIGKEIT

Ausstellungsdatum: 03.11.2025

Gültig bis: 03.11.2030

1.4 PROGRAMMBETRIEB

Kiwa-Ecobility Experts Wattstraße 11-13 13355 Deutschland

Raoul Mancke

(Leiter des Programmbetriebs, Kiwa-Ecobility Experts) Kripanshi Gupta

(Verifizierungsstelle, Kiwa-Ecobility Experts)

1.5 DETAILS ZUM DEKLARATIONSINHABER

Deklarationsinhaber: Naporo Klima Dämmstoff GmbH **Anschrift:** Auggenthal 158, 2054 Haugsdorf, Österreich

E-Mail: office@naporo.com

Website: https://www.naporo.com/

Produktionsstandort: Naporo Klima Dämmstoff GmbH

Adresse Produktionsstandort: Auggenthal 158, 2054 Haugsdorf, Österreich

1.6 VERIFIZIERUNG DER DEKLARATION

Die unabhängige Verifizierung erfolgt gemäß der ISO 14025:2011. Die Ökobilanz entspricht der ISO 14040:2006 und ISO 14044:2006. Die EN 15804:2012+A2:2019 dient als Kern-PCR

□ Intern

⊠ Extern

Refrice Dortan

Patrick Wortner, PeoplePlanetProfit GmbH & Co. KG

(Third party verifier)

1.7 ERKLÄRUNGEN

Der Eigentümer dieser EPD haftet für die zugrunde liegenden Informationen und Nachweise. Der Programmbetreiber Kiwa-Ecobility Experts haftet nicht in Bezug auf Herstellerdaten, Ökobilanzdaten und Nachweise.

1.8 PRODUKTKATEGORIEREGELN

PKR A

Kiwa-Ecobility Experts (Kiwa-EE) - Allgemeine Produktkategorieregeln (2022-02-14)]

PKR B

Anhang B1, Programm für Umweltinformationen nach EN 15804 / ISO 21630 von Kiwa-Ecobility Experts

1.9 VERGI FICHBARKFIT

Grundsätzlich ist ein Vergleich oder eine Bewertung der Umweltauswirkungen verschiedener Produkte nur möglich, wenn diese nach EN 15804+A2 erstellt wurden. Für die Bewertung der Vergleichbarkeit sind insbesondere die folgenden Aspekte zu berücksichtigen: Verwendete PCR, funktionale oder deklarierte Einheit, geographischer Bezug, die Definition der Systemgrenze, deklarierte Module, Datenauswahl (Primäroder Sekundärdaten, Hintergrunddatenbank, Datenqualität), verwendete Szenarien für Nutzungs- und Entsorgungsphasen und die Sachbilanz (Datenerhebung, Berechnungsmethoden, Zuordnungen, Gültigkeitsdauer). PCRs und allgemeine Programmanweisungen verschiedener EPD-Programme können sich unterscheiden. Die Vergleichbarkeit muss bewertet werden. Weitere Hinweise finden Sie in EN 15804+A2 (5.3 Vergleichbarkeit von EPDs für Bauprodukte) und ISO 14025 (6.7.2 Anforderungen an die Vergleichbarkeit).

1.10 BERECHNUNGSGRUNDLAGE

LCA-Methode: [EN15804+A2]

LCA-Software: Sphera LCA for Experts Version 10.9.1.10

Charakterisierungsmethode: EN 15804 +A2 (based on EF 3.1)

LCA-Datenbank-Profile:

ecoinvent+3.11+integrated CUP2025.1

GaBiDB 2025.1

Versionsdatenbank:

ecoinvent: 2025.1 (15.10.2025)

GaBiDB: 2025.1 (15.10.2025)

1.11 PROJEKT BERICHT

Diese EPD wurde auf der Grundlage des folgenden Berichts erstellt: Sphera LCA for Experts Hintergrundbericht

2 Produkt

2.1 PRODUKTBESCHREIBUNG

Es wird das Produkt Innenraumakustikplatten aus Hanf betrachtet. Dieses Produkt steht optional auch lackiert zur Verfügung. Es handelt sich um eine Innenraumakustikplatte, welche aus Hanf, Flachs und einer PET-Bicofaser besteht. Es gibt keinen allgemeinen Einbaufall, die Platten können unter anderem an Wänden geklebt oder geschraubt, oder als abgehängte Designelemente montiert werden. Die Akustikplatten sind in Dicken von 4,5 cm erhältlich. Die Platten sind sowohl unlackiert als auch lackiert vorhanden. Für den Brandschutz werden die Platten mit einem Brandschutz-Salz behandelt.

Alle weiteren Herstellerrelevanten Informationen und Nachweise können bei Bedarf direkt beim Hersteller bezogen werden.

Produktspezifikation

Die Zusammensetzung des Hauptprodukts sowie des optionalen lackierten Produkts ist in der folgenden Tabelle beschrieben. Die Werte in der Klammer gelten dabei für die optionale. lackierte Variante:

Materialien	Gewicht [m-%]
Hanf	55 (50)
Flachs	30 (28)
PET-Bicofaser	14 (13)
Aflammit	< 1 (<1)
Farbe (optional)	0 (8)

2.2ANWENDUNG (VERWENDUNGSZWECK DES PRODUKTS)

Hauptanwendungsgebiet für das deklarierte Produkt ist der Schallschutz im Innenraum. Die Innenraumakustikplatten werden im Innenraum montiert an Wänden oder Decken montiert.

2.3 REFERENZ-LEBENSDAUER (RSL)

Diese EPD folgt dem Modulkonzept Wiege bis Werkstor mit Optionen. Module B1–B7 wurden nicht berücksichtigt; daher entfällt die Angabe einer Referenznutzungsdauer

(RSL).

2.4 TECHNISCHE DATEN

Beschreibung	Einheit	Wert
Nenndichte	kg/m³	140
Wärmeleitfähigkeit	W/(mK)	0,042
Schallabsorption	-	aW = 0,75
Brandverhalten nach DIN EN 13501	-	Е

2.5 HINWEIS ZU EMISSIONEN UND FREISETZUNGEN

Das Produkt wird in Innenräumen verwendet und steht mit der Innenraumluft in Kontakt. Es gibt keinen Kontakt zu Boden oder Wasser.

Emissionen in die Innenraumluft wurden gemäß EN 16516 geprüft, eine Freisetzung in Boden und Wasser sind nicht relevant und werden nicht deklariert.

Der Nachweis für die Emissionen in die Innenraumluft können beim Hersteller eingeholt werden.

2.6 BESONDERS BESORGNISERREGENDE STOFFE

Das Produkt enthält keine Stoffe, welche in der Liste der Europäischen Chemikalienagentur als "besonders besorgniserregende Stoffe der Kandidatenliste für die Zulassung nach REACH" aufgeführt sind.

2.7 BESCHREIBUNG PRODUKTIONSPROZESS

Der Hanf und Flachs werden als Restprodukte von Bauern aus Österreich und Tschechien in einem Umkreis von ca. 150 km angekauft. Diese werden in Abhängigkeit des jeweiligen Bauers per LKW oder Traktor in Ballenform angeliefert. Bei der Eingangskontrolle werden die Feuchte und der allgemeine optische Zustand überprüft. Die Ballen kommen dann sortenrein in die Produktionslinie 1. In dieser Linie werden die Hanf- und Flachsballen aufgerissen, Verunreinigungen (Steine, Erde, usw.) entfernt und die Fasern auf eine vorgegebene Länge gekürzt. Danach werden rechteckige Ballen gepresst und im Zwischenlager als Halbzeug gelagert. Bei der zweiten Produktionslinie werde Hanf- und Flachshalbzeug sowie die PET-Bicofaser getrennt

voneinander aufgegeben. Die Bicofaser aus PET wird mittels Schiffs und LKW von Südkorea angeliefert. Kurz nach der Aufgabe wird das Flammschutzmittel Aflammit zugegeben. Danach werden die drei Fasern miteinander vermischt und in die Form eines Vlieses gebracht. Das Vlies wird auf eine vorgegebene Breite geschnitten und tritt in den Ofen ein. Im Ofen schmilzt die äußere Schicht der Bicofaser an und bindet dadurch die drei Fasern miteinander. Am Ende des Ofens kommt das Vlies abgekühlt zum Zuschnitt. Zuerst wird ein zweiter Randschnitt entfernt und danach wird das Vlies in Platten geschnitten. Die Randschnitte werden dem Produktionsprozess wieder zugeführt, sodass ein interner Kreislauf erzeugt wird. Danach werden die Platten eingelagert und für den Transport verpackt. Optional können die Platten lackiert werden.

Es werden nur Euro-Paletten verwendet, welche im Kreislauf geführt werden, diese sind nicht mitbetrachtet.

Abbildung 1 zeigt der Prozessfluss vereinfacht dargestellt in die einzelnen Lebenszyklen.

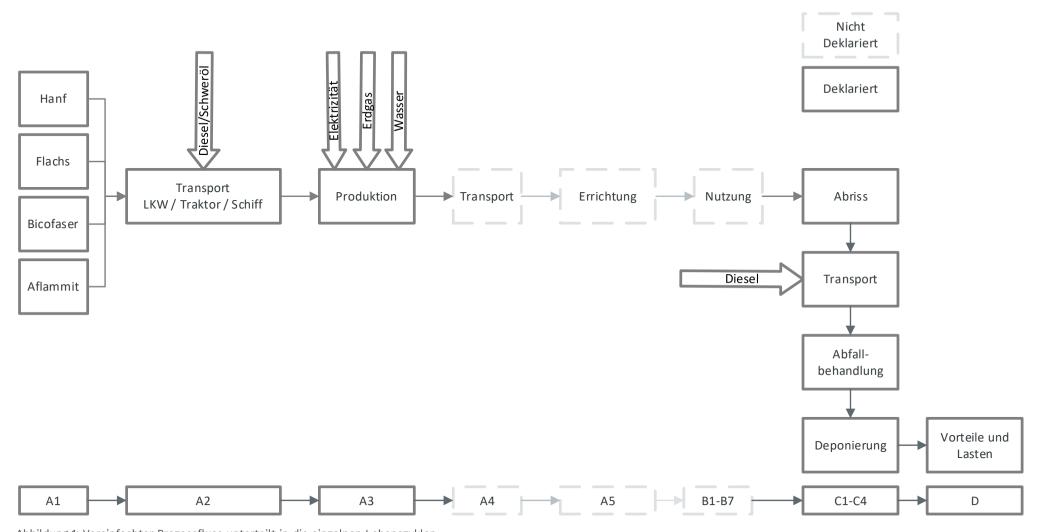


Abbildung 1: Vereinfachter Prozessfluss unterteilt in die einzelnen Lebenszyklen.

3 Berechnungsregeln

3.1 DEKLARIERTE EINHEIT

Ein Quadratmeter (m²) Innenraumakustikplatten aus Hanf naturbelassen mit einer Dicke von 4,5 cm.

Es ist 1 m² Lärmschutzabsorber aus Hanf mit einer Dicke von 4,5 cm deklariert. Die deklarierte Innenraumakustikplatte variiert in ihren flächenmäßigen Abmessungen, jedoch nicht bei der Dicke. Die Zusammensetzung bleibt jedoch immer dieselbe und daher hat die Größe keinen Einfluss auf die Ergebnisse der LCA.

3.2 UMRECHNUNGSFAKTOREN

Beschreibung	Wert	Einheit
Referenzeinheit	1	m²
Gewicht pro Referenzeinheit	6,37	kg
Umrechnungsfaktor auf 1 kg	0,157	m²

3.3 GELTUNGSBEREICH DER DEKLARATION UND SYSTEMGRENZEN

Die EPD bezieht sich auf Wiege bis Werkstor mit Optionen, Modulen C1-C4 und Modul

Die Lebenszyklusstadien sind in der folgenden Abbildung dargestellt:

(X = Modul deklariert, ND = Modul nicht deklariert)

A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Х	Χ	Χ	ND	ND	ND	ND	ND	ND	ND	ND	ND	Χ	Χ	Χ	Χ	Χ

Die Module der EN15804+A2 enthalten folgendes:

Modul A1 = Rohstoffbereitstellung	Modul B5 = Umbau/ Erneuerung
Modul A2 = Transport	Modul B6 = Betriebliche Energieeinsatz
Modul A3 = Herstellung	Modul B7 = Betrieblicher Wassereinsatz
Modul A4 = Transport	Modul C1 = Rückbau, Abriss

Modul A5 = Bau-/ Einbauprozess	Modul C2 = Transport
Modul B1 = Nutzung	Modul C3 = Abfallbehandlung
Modul B2 = Instandhaltung	Modul C4 = Deponierung
	Modul D = Vorteile und Lasten
Modul B3 = Reparatur	über die Produktsystemgrenzen
	hinaus
Modul B4 = Ersatz	

A1-A3:

Die Herstellungsphase umfasst die Produktion der Innenraumakustikplatte wie unter Punkt 2.7 erläutert. Es sind die entsprechenden Vorketten der Bestandteile, sprich den Anbau von Hanf und Flachs, die Herstellung der Bicofaser und des Aflammit, sowie deren Verpackungen enthalten.

Darüber hinaus sind die Transporte dieser Einsatzstoffe ins Produktionswerk sowie der Transport der bei der Produktion entstehen, der Transport für die Abfälle und deren Abfallbehandlung miteinbezogen.

Je nachdem ob die Platten lackiert oder unlackiert verkauft werden ist diese inkl. der Farbproduktion und deren Transportwegen miteinbezogen.

Für die Bilanzierung wurde der in den nachwachsenden Rohstoffen (Hanf und Flachs) enthaltene Kohlenstoff am Systemeintritt negativ gerechnet.

A4-A5:

Nicht deklariert

B1-B7:

Nicht deklariert

C1-C4

Für die Entsorgungsphase wird ein Szenario mit Verbrennung der Innenraumakustikplatte (inkl. Flammschutzmittel) betrachtet (Verbrennung mit Energierückgewinnung). Die Umweltwirkung des Verbrennungsprozess wurden in C3 deklariert. Bei der Abfallbehandlung produzierte Nutzenergie wurde als Gutschrift in Modul D deklariert.

D

Als Lasten wurde die Verbrennung der Transportverpackungen bilanziert. Die entstandene Energie durch die Verbrennung dieser Verbrennung wurden als Gutschrift gegengerechnet. Zusätzlich wurde die Energierückgewinnung aus dem Verbrennungsprozess von Modul A3 und Modul C3 (inkl. Flammschutzmittel) als Gutschrift eingerechnet.

Die Systemgrenze wurde gemäß EN 15804+A2 und der zugrunde liegenden PCR definiert.

3 4 REPRÄSENTATIVITÄT

Diese EPD ist repräsentativ für Innenraumakustikplatten aus Hanf. Dieses Produkt steht optional auch lackiert zur Verfügung. Es handelt sich um ein Produkt von Naporo Klima Dämmstoff GmbH

Herstellerspezifische EPD - spezifisches Produkt

Die angegebenen Daten beziehen sich auf das Produktionswerk in Österreich (Standort nahe der tschechischen Grenze).

3.5 ABSCHNEIDEKRITERIEN

Produktionsphase (A1-A3):

Alle relevanten Input- und Outputströme, wie Rohstoffe, Transportprozesse, Energieverbrauch und Verpackungen, wurden vollständig erfasst. Kein einzelner Stoffstrom wurde abgeschnitten, sofern er mehr als 1% der Gesamtmasse oder des Energieeinsatzes ausmacht.

Ausgeschlossen wurden die folgenden Prozesse:

- Die Herstellung von Ausrüstungsgegenständen für die Produktion, von Gebäuden oder anderen Investitionsgütern.
- Die Beförderung von Personal zur Produktionsanlage,
- Forschungs- und Entwicklungstätigkeiten.

End-of-Life-Phase (C1-C4):

Im End-of-Life-Bereich umfasst Modul C1 den händischen Ausbau, C2 den Transport per LKW und C3 die Verbrennung der Produkt- und Verpackungsabfälle. Modul C4 ist ebenfalls deklariert, weist aber keine Umweltwirkungen auf, da keine Deponierung erfolgt und sämtliche Abfälle energetisch verwertet werden. Alle relevanten Stoffströme sind in diesen Phasen vollständig berücksichtigt, und es wurden keine wesentlichen Flüsse ausgeschlossen.

Modul D (Lasten und Gutschriften):

Modul D beinhaltet die Gutschriften aus der energetischen Verwertung (Verbrennung) des Produkts, der Produktverpackungen (A3) und der Transportverpackungen sowie die Lasten der Verbrennung durch die Transportverpackungen. Sämtliche relevanten positiven Umweltauswirkungen sind in der Bilanz berücksichtigt.

Die Summe aller vernachlässigten Stoffflüsse beträgt in der gesamten Bilanz weniger als 5% bezüglich Masse und Energie. Es wurden keine Stoffströme oder Prozesse ausgeschlossen, die potenziell relevante Umweltwirkungen haben könnten.

Somit ist sichergestellt, dass die Bilanz die wesentlichen Einflussfaktoren vollständig abbildet und den Anforderungen der EN 15804+A2 entspricht.

3.6 ALLOKATION

In der Produktion werden Hanfplatten mit unterschiedlichen Dichten, jedoch identischen Produktionsprozessen und Materialzusammensetzungen hergestellt. Die Umweltwirkungen pro funktionale Einheit (1 m²) ergeben sich ausschließlich durch die unterschiedlichen Dichten. Daher war keine Allokation im Sinne der ISO 14044 erforderlich.

Die Allokation wurde vermeidbar gemacht, indem alle Daten bezogen auf die Funktionseinheit (1 m² fertiges Produkt) ausgewertet wurden. Folgende Punkte wurden sichergestellt:

- Kein Auftreten von Doppelerfassungen oder Auslassungen von Stoff- oder Energieflüssen
- Übereinstimmung der Summe der Inputs und Outputs vor und nach eventueller interner Zuordnung
- Beachtung der Grundsätze der Einheitlichkeit und Transparenz gemäß ISO 14044

3.7 DATENERHEBUNG & BEZUGSZEITRAUM

Die Primärdaten einschließlich aller Rohstoffe, Verpackungsmaterialien, des Energieverbrauchs und der Hilfsstoffe wurden umfassend für das Berichtsjahr vom 01.01.2024 bis zum 31.12.2024 erhoben. Die Daten wurden vom Hersteller der Lärmschutzabsorber bereitgestellt und basieren auf folgenden Quellen:

- Energieverbrauch: Abrechnungen der Strom- und Gaslieferanten
- Rohstoffverbrauch: Aufzeichnungen der Rohstoffkäufe beim Lieferanten
- **Produktionsmengen und Abfall:** Produktionsaufzeichnungen des Herstellers sowie Abrechnungen der Abfallentsorger
- Transportwege: Die Transportkilometer der Rohstoffe zum Produktionsstandort wurden vom Hersteller auf Basis der Standortangaben der Rohstofflieferanten ermittelt. Für die meisten Rohstoffe wurden die Distanzen zwischen den jeweiligen Lieferantenstandorten und dem Werk berechnet. Für einen Rohstoff, der aus Südkorea stammt, wurden die Transportwege mit einem Routenplaner modelliert. Dabei wurde der Transport per Schiff und anschließend per LKW berücksichtigt, um die realistischen Kilometer für den Transport abzubilden.

Es wurde sichergestellt, dass die spezifischen Daten nicht älter als fünf Jahre und die generischen Daten nicht älter als zehn Jahre sind.

Die angegebenen Werte sind arithmetische Mittelwerte, berechnet aus den vorliegenden Datensätzen des angegebenen Erhebungszeitraums.

3.8 SCHÄTZLINGEN LIND ANNAHMEN

Die Verpackungen der Roh- und Hilfsstoffe wurden miteinbezogen, wobei aufgrund der fehlenden Herkunfts- und Herstellungsnachweise vorhandene Datensätze aus der Datenbank verwendet wurden. Für die Transportwege der Verpackungen von der Produktion wurde eine Distanz von 150 km und für die Verpackungen der vorgelagerten Produkte wurden 250 km angenommen.

Für die Entsorgung der anfallenden Abfälle aus der Produktion und des EoL wurden 75 km angenommen.

Die PET-Bicofaser wird in Südkorea produziert. Da kein spezifischer Datensatz für die Bicofaserherstellung verfügbar war, wurde ein europäischer Faser-Datensatz verwendet. Zur besseren Annäherung an reale Bedingungen wurde ein Materialaufschlag berücksichtigt, und der Strommix wurde an südkoreanische Verhältnisse angepasst.

Für LKW-Transporte wurden grundsätzlich RER-Datensätze mit Emissionsstandard Euro 5 verwendet, lediglich für den Transportweg der Farbe für die Lackierung, welcher innerhalb Österreichs durchgeführt wird wurde ein Transport mit Emissionsstandard Euro 6 verwendet. Für Schiffstransporte kam ein globaler (GLO) Fracht-Datensatz zur Anwendung. Mangels geeigneter europäischer Alternativen wurde für Traktortransporte ein CH-Datensatz verwendet.

Die zugrunde liegenden Herstellungsdaten stammen aus dem Jahr 2024. Alle übrigen sekundären Daten stammen aus den angegebenen, aktuellen Datenbanken.

Die Systemgrenze umfasst die Module A1–A3, C1–C4 sowie D. Die Module A4 und A5 sowie alle Module der Nutzungsphase (B1–B7) wurden nicht betrachtet.

Die getroffenen Annahmen und Schätzwerte betreffen vor allem Transportdistanzen, Datensatzsubstitutionen (z.B. Traktortransport), energetische Gutschriften sowie die geografische Anpassung einzelner Prozesse. Diese Annahmen wurden so gewählt, dass sie konservativ und plausibel im Sinne der EN 15804 und ISO 14044 sind.

Es wurden keine Massen- und Energiebezogene Flüsse über 1 % ausgeschlossen und die Summe aller vernachlässigten Flüsse überschreitet nicht die Grenze von 5 %.

3.9 DATENQUALITÄT

Die prozessspezifischen Daten wurden vom Jahr 2024 verwendet, die Daten sind von einem gesamten Jahr. Für die Hintergrunddaten wurde die Ecoinvent-Datenbank 3.11 2025.1 verwendet. Zusätzlich wurden vier Datensätze (elektrische Energie aus Biomasse, elektrische Energie aus Biogas, PET-Faserherstellung und Hanfanbau) aus der GaBiDB 2025.1 verwendet. Dies wurde entschieden, dass diese Datensätze eine bessere Übereinstimmung zu den realen Prozessen bieten bzw. der Strommix optimaler modelliert werden konnte. Außerdem wurden für die Berechnung der Gutschriften Prozesse von der Sphera Datenbank verwendet.

Die Primärdaten wurden von der Naporo Klima Dämmstoff GmbH bereitgestellt.

Der Lebenszyklus wurde mit Sphera LCA for Experts modelliert.

Qualitäts- anforderung	Spezifische Anforderung	Level der Datenqualität	Anmerkungen
Zeitbezogene Abdeckung	Alter der Daten und Mindestzeitraum für die Datenerhebung.	sehr gut	Daten des gesamten Produktionsjahres 2022
	Vorgelagert: Prozesseinheit für Rohmaterial sollte für die jeweilige geografische Region erfasst werden	gut	Stromverbrauch der Bicofaser aus Südkorea wurde angepasst
Geografische Abdeckung	Kern: Der Prozess der Produktionseinheit sollte den realen Standort repräsentieren.	gut	Daten aus Österreich, oder dem europäischen Raum
	Nachgelagert: Die End-of-Life- Entsorgung sollte die Region der Entsorgung darstellen.	sehr gut	Entsorgungsarten und Entfernungen wurden an Österreich angepasst
Technische Repräsentativität	Qualitative Bewertung des Grades, zu dem der Datensatz die wahre Population von Interesse widerspiegelt (Technologie)	sehr gut	Daten direkt von untersuchten Prozessen

3.10 STANDORTSPEZIFISCHER STROMMIX (Market-based approach)

Die Naporo Klima Dämmstoff GmbH betreibt ihren Standort in Österreich, nahe der tschechischen Grenze ausschließlich mit Ökostrom. Der Strom wird von Kelag Energie und Wärme bezogen. Da die Naporo zur Strabag gehört gilt für die Naporo derselbe Vertag. Die Modellierung des standortspezifischen Strommixes basiert auf Daten aus dem Jahr 2024 und ergibt ein CO2eq von 0,00366 kg/kWh. Als Nachweis für die Verwendung von 100% erneuerbarem Strom wurde der Herkunftsnachweis für das Jahr 2024 verwendet. Der Strommix entspricht dem tatsächlich bezogenen Strom am Standort und wurde für die EPD gemäß den Anforderungen der EN 15804+A2 dokumentiert. Daher handelt es sich um einen marktbasierten Ansatz.

4 Szenarien und zusätzliche technische Informationen

4.1 ROHSTOFFBEREITSTELLUNG (A1)

Die Sachbilanz der Rohstoffbereitstellung wurde mittels Daten vom Produkthersteller und generischen Daten erstellt. Der Produkthersteller stellte die spezifischen Massen und Herkunftsnachweise bereit. Für den Anbau bzw. die Erzeugung der Rohstoffe und deren Verpackungen wurden generische Daten herangezogen.

4.2 TRANSPORT (A2)

Der Transport wurde mittels Daten des Produktherstellers berechnet. Durch die vorhandenen Massen, die bekannte Herkunft sowie deren Transportart wurden der Transport modelliert.

4.3 HERSTELLUNG (A3)

Die Herstellung wurde durch spezifische Daten vom Produkthersteller modelliert. Lediglich für die Produktion der notwendigen Hilfs- und Verpackungsstoffe wurden generische Datensätze verwendet.

4.4 RÜCKBAU/ ABRISS (C1)

Beim Abbruch finden keine Stoff- und Energieströme statt, da angenommen wird, dass die Innenraumakustikplatten händisch demontiert werden.

4.5 TRANSPORT END-OF-LIFE (C2)

Für den Transport nach der Demontage wurde eine Distanz von 75 km angenommen. Durch das gute Abfallbehandlungssystem in Österreich können die Transportdistanzen geringgehalten werden. Der Transport wurde mit einem Transportdatensatz von Ecoinvent (RER: lorry 16-32 metric ton, EURO5) modelliert.

4.6 END-OF-LIFE (C3)

Es wäre grundsätzlich möglich das Produkt am Ende des Lebenszyklus zurück in die Produktion zu führen. Derzeit ist jedoch keine ausreichende Infrastruktur für die Sammlung und den Rücktransport verfügbar. Daher wird ein Szenario betrachtet, in welchem die Innenraumakustikplatten zu 100 % einer Verbrennung mit Energierückgewinnung zugeführt wird, da davon auszugehen ist, dass diese einen R1 – Wert > als 0,6 hat. Für die Verbrennung wird ein Datensatz von Ecoinvent (AT: treatment of municipal solid waste, municipal incineration) verwendet. Die Umweltwirkungen des Verbrennungsprozess wurden in Modul C3 berücksichtigt. Es entsteht kein Abfall, welcher deponiert werden muss. Die bei der Abfallbehandlung produzierte Nutzenergie wird im Modul D als Gutschrift dargestellt.

4.7 END-OF-LIFE (C4)

Es fällt kein Abfall, welcher deponiert werden muss, an. Die gesamte Innenraumakustikplatte kann der Abfallverbrennung zugeführt werden. Die Innenraumakustikplatte ist mit dem Flammschutzmittel Aflammit behandelt, um den Brandschutz zu verbessern. Am Ende der Nutzungsdauer wird die Innenraumakustikplatte thermisch verwertet (vollständige Verbrennung in zertifizierter Anlage). Dabei fallen mineralische Rückstände an, die mengenmäßig sehr gering sind und im Rahmen der thermischen Verwertung behandelt werden. Eine separate Deponierung dieser Rückstände findet nicht statt. Die Emissionen und Umweltwirkungen der thermischen Verwertung sind in Modul C3 vollständig berücksichtigt

4.8 VORTEILE UND LASTEN AUBERHALB DER SYSTEMGRENZE (D)

Im Modul D werden die Umweltlasten und -gutschriften der Transportverpackung sowie der Produktverpackungen und des Produkts am End-of-Life (EoL) bilanziert.

- Für die Transportverpackung werden sowohl Umweltlasten durch die Verbrennung als auch Gutschriften durch die Energierückgewinnung berücksichtigt.
- Für die Produktverpackungen, welche in A3 thermisch verwertet werden, wird die Energierückgewinnung als Gutschrift in Modul D bilanziert.
- Das Produkt am EoL wird über C3 thermisch verwertet, wobei die Energierückgewinnung als Umweltgutschrift in Modul D bilanziert wird.

Durch die Energierückgewinnung aus der Verbrennung ergeben sich 17,7 MJ an thermischer Energie und 9,43 MJ an elektrischer Energie für die unlackierte Variante und 19,2 MJ an thermischer Energie und 10,2 MJ an elektrischer Energie für die lackierte Variante als Gutschriften. Für die Modellierung der rückgewonnenen Energie wurden Datensätze von der Sphera Datenbank (AT: Electricity grid mix und AT: Process steam from natural gas 95%) verwendet.

5 Ergebnisse

Für die Wirkungsabschätzung werden die Charakterisierungsfaktoren der LCIA-Methode EN 15804 +A2 (based on EF 3.1) verwendet. Langfristige Emissionen (>100 Jahre) werden in der Wirkungsabschätzung nicht berücksichtigt. Die Ergebnisse der Wirkungsabschätzung sind nur relative Aussagen, die keine Aussagen über Endpunkte der Wirkungskategorien, Überschreitungen von Schwellenwerten, Sicherheitsmargen oder Risiken machen. Die folgenden Tabellen zeigen die Ergebnisse der Indikatoren der Wirkungsabschätzung, des Ressourcenverbrauchs sowie der Abfallund sonstigen Output-Flüsse.

5.1 UMWELTAUSWIRKUNGSINDIKATOREN PRO m² MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

KERNINDIKATOREN FÜR UMWELTWIRKUNGEN EN15804+A2 PRO m² MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	A3	C1	C2	C3	C4	D
AP	mol H ⁺ eqv.	3,89E-02	2,84E-02	7,23E-03	3,19E-03	0,00E+00	2,89E-04	1,85E-03	0,00E+00	-1,31E-03
GWP-total	kg CO ₂ eqv.	-2,23E+00	-4,29E+00	5,10E-01	1,55E+00	0,00E+00	9,26E-02	7,94E+00	0,00E+00	-9,32E-01
GWP-b	kg CO₂ eqv.	-9,96E+00	-9,84E+00	-5,57E-04	-1,23E-01	0,00E+00	6,34E-05	4,63E+00	0,00E+00	-9,22E-03
GWP-f	kg CO₂ eqv.	7,72E+00	5,54E+00	5,11E-01	1,67E+00	0,00E+00	9,25E-02	3,31E+00	0,00E+00	-9,20E-01
GWP-luluc	kg CO₂ eqv.	6,35E-03	5,05E-03	2,70E-04	1,03E-03	0,00E+00	3,02E-05	5,60E-05	0,00E+00	-3,24E-03
EP-m	kg N eqv.	1,54E-02	1,26E-02	1,91E-03	8,78E-04	0,00E+00	9,82E-05	1,02E-03	0,00E+00	-4,19E-04
EP-fw	kg P eqv.	2,08E-03	1,83E-03	3,52E-05	2,12E-04	0,00E+00	6,17E-06	2,83E-04	0,00E+00	-2,06E-06
EP-T	mol N eqv.	1,26E-01	9,58E-02	2,10E-02	8,66E-03	0,00E+00	1,06E-03	8,70E-03	0,00E+00	-4,62E-03
ODP	kg CFC 11 eqv.	8,41E-08	1,50E-08	8,59E-09	6,05E-08	0,00E+00	1,84E-09	4,05E-09	0,00E+00	-1,71E-11
POCP	kg NMVOC eqv.	2,88E-02	1,82E-02	6,22E-03	4,33E-03	0,00E+00	4,53E-04	2,29E-03	0,00E+00	-1,10E-03
ADP-f	MJ	1,52E+02	1,18E+02	6,71E+00	2,77E+01	0,00E+00	1,30E+00	2,29E+00	0,00E+00	-3,02E+01
ADP-mm	kg Sb-eqv.	1,86E-05	1,19E-05	1,40E-06	5,30E-06	0,00E+00	2,96E-07	4,37E-07	0,00E+00	-1,91E-07
WDP	m³ world eqv.	7,56E+00	7,15E+00	3,80E-02	3,70E-01	0,00E+00	7,64E-03	2,98E-01	0,00E+00	1,09E-01

AP=Acidification (AP) | GWP-total=Global warming potential (GWP-total) | GWP-b=Global warming potential - Biogenic (GWP-b) | GWP-f=Global warming potential - Fossil (GWP-f) | GWP-luluc=Global warming potential - Land use and land use change (GWP-luluc) | EP-m=Eutrophication marine (EP-m) | EP-fw=Eutrophication, freshwater (EP-fw) | EP-T=Eutrophication, terrestrial (EP-T) | ODP=Ozone depletion (ODP) | POCP=Photochemical ozone formation - human health (POCP) | ADP-f=Resource use, fossils (ADP-f) | ADP-mm=Resource use, minerals and metals (ADP-mm) | WDP=Water use (WDP)

ZUSÄTZLICHE UMWELTWIRKUNGSINDIKATOREN EN15804+A2 PRO m² MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	A3	C1	C2	C3	C4	D
ETP-fw	CTUe	7,30E+01	5,87E+01	1,74E+00	1,25E+01	0	3,49E-01	1,20E+01	0	-2,54E+00
PM	Disease incidenc	e 3,35E-07	2,24E-07	2,34E-08	8,71E-08	0	5,90E-09	1,61E-08	0	-9,76E-09
HTP-c	CTUh	2,05E-08	9,62E-09	3,41E-09	7,47E-09	0	6,49E-10	3,25E-09	0	-3,56E-10
HTP-nc	CTUh	1,02E-07	7,26E-08	4,09E-09	2,56E-08	0	7,78E-10	3,74E-08	0	-4,10E-09
IR	kBq U-235 eqv.	4,47E-01	2,76E-01	7,33E-03	1,64E-01	0	1,67E-03	5,14E-03	0	-5,66E-02
SQP	Pt	3,86E+02	3,54E+02	2,83E+00	2,87E+01	0	7,73E-01	1,18E+00	0	-8,89E+00

ETP-fw=Ecotoxicity, freshwater (ETP-fw) | PM=Particulate Matter (PM) | HTP-c=Human toxicity, cancer (HTP-c) | HTP-nc=Human toxicity, non-cancer (HTP-nc) | IR=Ionising radiation, human health (IR) | SQP=Land use (SQP)

KLASSIFIZIERUNG VON EINSCHRÄNKUNGSHINWEISEN FÜR DIE DEKLARATION VON KERN- UND ZUSATZUMWELTWIRKUNGSINDIKATOREN

ILCD-Klassifizierung	Indikator	Haftungsausschluss
ILCD-Typ / Stufe 1	Treibhauspotenzial (GWP)	Keine
	Potenzial des Abbaus der stratosphärischen Ozonschicht (ODP)	Keine
	Potenzielles Auftreten von Krankheiten aufgrund von Feinstaubemissionen (PM)	Keine
ILCD-Typ / Stufe 2	Versauerungspotenzial, kumulierte Überschreitung (AP)	Keine
	Eutrophierungspotenzial, in das Süßwasser gelangende Nährstoffanteile (EP-freshwater)	Keine
	Eutrophierungspotenzial, in das Salzwasser gelangende Nährstoffanteile (EP-marine)	Keine
	Eutrophierungspotenzial, kumulierte Überschreitung (EP-terrestrial)	Keine
	Troposphärisches Ozonbildungspotenzial (POCP)	Keine
	Potenzielle Wirkung durch Exposition des Menschen mit U235 (IRP)	1
ILCD-Typ / Stufe 3	Potenzial für die Verknappung von abiotischen Ressourcen für nicht fossile Ressourcen (ADP-	2
	minerals&metals)	
	Potenzial für die Verknappung von abiotischen Ressourcen für fossile Ressourcen (ADP-fossil)	2
	Wasser-Entzugspotenzial (Benutzer), entzugsgewichteter Wasserverbrauch	2
	(WDP)	
	Potenzielle Toxizitätsvergleichseinheit für Ökosysteme (ETP-fw)	2
	Potenzielle Toxizitätsvergleichseinheit für den Menschen (HTP-c)	2

Potenzielle Toxizitätsvergleichseinheit für den Menschen (HTP-nc)	2
Potenzieller Bodenqualitätsindex (SQP)	2

Einschränkungshinweis 1 - Diese Wirkungskategorie befasst sich hauptsächlich mit den möglichen Auswirkungen niedrig dosierter ionisierender Strahlung auf die menschliche Gesundheit durch m Zusammenhang mit dem Kernbrennstoffkreislauf. Sie berücksichtigt nicht die Auswirkungen möglicher nuklearer Unfälle, beruflicher Exposition oder der Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Potenzielle ionisierende Strahlung aus dem Boden, aus Radon und aus einigen Baumaterialien wird ebenfalls nicht von diesem Indikator erfasst.

Einschränkungshinweis 2 - Die Ergebnisse dieses Umweltauswirkungsindikators sind mit Vorsicht zu verwenden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder nur begrenzte Erfahrungen mit dem Indikator vorliegen.

5.2 INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENVERBRAUCHS UND UMWELTINFORMATIONEN AUF DER GRUNDLAGE DER SACHBILANZ (LCI)

PARAMETER ZUR BESCHREIBUNG DES RESSOURCENEINSATZES PRO m2 MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
PERE	MJ	1,30E+02	1,14E+02	1,60E-01	1,63E+01	0	2,21E-02	7,77E-02	0	-1,40E+01
PERM	MJ	0	0	0	0	0	0	0	0	0
PERT	MJ	1,30E+02	1,14E+02	1,60E-01	1,63E+01	0	2,21E-02	7,77E-02	0	-1,40E+01
PENRE	MJ	1,52E+02	1,18E+02	6,71E+00	2,77E+01	0	1,30E+00	2,29E+00	0	-3,02E+01
PENRM	MJ	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,52E+02	1,18E+02	6,71E+00	2,77E+01	0	1,30E+00	2,29E+00	0	-3,02E+01
SM	kg	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m³	1,90E-01	1,81E-01	8,84E-04	8,68E-03	0	1,78E-04	6,95E-03	0	-4,27E-03

PERE=renewable primary energy ex. raw materials | PERM=renewable primary energy used as raw materials | PERT=renewable primary energy total | PERRE=non-renewable primary energy ex. raw materials | PERRM=non-renewable primary energy used as raw materials | PERRT=non-renewable primary energy total | SM=use of secondary material | RSF=use of renewable secondary fuels | NRSF=use of non-renewable secondary fuels | FW=use of net fresh water

ANDERE UMWELTINFORMATIONEN ZUR BESCHREIBUNG VON ABFALLKATEGORIEN PRO m² MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	С3	C4	D
HWD	kg	2,14E-01	1,73E-01	9,72E-03	3,13E-02	0	1,26E-03	2,54E-01	0	-1,63E-08
NHWD	kg	1,91E+00	2,48E-01	0,00E+00	1,66E+00	0	0	0	0	1,31E-01
RWD	kg	1,48E-03	1,48E-03	0,00E+00	2,38E-07	0	0	0	0	-7,26E-04

HWD=hazardous waste disposed | NHWD=non-hazardous waste disposed | RWD=radioactive waste disposed

UMWELTINFORMATIONEN ZUR BESCHREIBUNG VON OUTPUT-FLÜSSEN PRO m² MIT EINER STÄRKE VON 4,5 CM (UNLACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	2,83E-02	0	0	0	0	0
MER	kg	0	0	0	0	0	0	6,37	0	0
EET	MJ	0	0	0	0	0	0	0	0	1,77E+01
EEE	MJ	0	0	0	0	0	0	0	0	9,43E+00

CRU=Components for re-use | MFR=Materials for recycling | MER=Materials for energy recovery | EET=Exported Energy Thermic | EEE=Exported Energy Electric

5.3 UMWELTAUSWIRKUNGSINDIKATOREN PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT)

KERNINDIKATOREN FÜR UMWELTWIRKUNGEN EN15804+A2 PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
AP	mol H⁺ eqv.	5,00E-02	2,84E-02	7,23E-03	1,43E-02	0,00E+00	3,15E-04	2,01E-03	0,00E+00	-1,47E-03
GWP-total	kg CO2 eqv.	-1,44E+00	-4,29E+00	5,10E-01	2,34E+00	0,00E+00	1,01E-01	8,66E+00	0,00E+00	-1,10E+00
GWP-b	kg CO2 eqv.	-9,93E+00	-9,84E+00	-5,57E-04	-9,17E-02	0,00E+00	6,91E-05	5,05E+00	0,00E+00	-9,99E-03
GWP-f	kg CO ₂ eqv.	8,48E+00	5,54E+00	5,11E-01	2,43E+00	0,00E+00	1,01E-01	3,61E+00	0,00E+00	-1,09E+00
GWP-luluc	kg CO2 eqv.	6,91E-03	5,05E-03	2,70E-04	1,59E-03	0,00E+00	3,30E-05	6,11E-05	0,00E+00	-3,52E-03
EP-m	kg N eqv.	1,62E-02	1,26E-02	1,91E-03	1,62E-03	0,00E+00	1,07E-04	1,11E-03	0,00E+00	-4,73E-04
EP-fw	kg P eqv.	2,32E-03	1,83E-03	3,52E-05	4,54E-04	0,00E+00	6,73E-06	3,08E-04	0,00E+00	-2,24E-06
EP-T	mol N eqv.	1,32E-01	9,58E-02	2,10E-02	1,52E-02	0,00E+00	1,16E-03	9,49E-03	0,00E+00	-5,22E-03

ODP	kg CFC 11 eqv.	9,93E-08	1,50E-08	8,59E-09	7,57E-08	0,00E+00	2,00E-09	4,42E-09	0,00E+00	-1,86E-11
POCP	kg NMVOC eqv.	3,20E-02	1,82E-02	6,22E-03	7,59E-03	0,00E+00	4,94E-04	2,50E-03	0,00E+00	-1,24E-03
ADP-f	MJ	1,64E+02	1,18E+02	6,71E+00	3,98E+01	0,00E+00	1,42E+00	2,50E+00	0,00E+00	-3,27E+01
ADP-mm	kg Sb-eqv.	2,36E-05	1,19E-05	1,40E-06	1,03E-05	0,00E+00	3,22E-07	4,77E-07	0,00E+00	-2,07E-07
WDP	m³ world eqv.	8,25E+00	7,15E+00	3,80E-02	1,06E+00	0,00E+00	8,33E-03	3,26E-01	0,00E+00	1,06E-01

AP=Acidification (AP) | GWP-total=Global warming potential (GWP-total) | GWP-b=Global warming potential - Biogenic (GWP-b) | GWP-f=Global warming potential - Fossil (GWP-f) | GWP-luluc=Global warming potential - Land use and land use change (GWP-luluc) | EP-m=Eutrophication marine (EP-m) | EP-fw=Eutrophication, freshwater (EP-fw) | EP-T=Eutrophication, terrestrial (EP-T) | ODP=Ozone depletion (ODP) | POCP=Photochemical ozone formation - human health (POCP) | ADP-f=Resource use, fossils (ADP-f) | ADP-mm=Resource use, minerals and metals (ADP-mm) | WDP=Water use (WDP)

ZUSÄTZLICHE UMWELTWIRKUNGSINDIKATOREN EN15804+A2 PRO m² MIT EINER STÄRKE VON 4.5 CM (LACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	A3	C1	C2	C3	C4	D
ETP-fw	CTUe	7,31E+01	5,87E+01	1,74E+00	1,26E+01	0	3,81E-01	1,31E+01	0	-2,78E+00
PM	Disease incidend	ce 3,35E-07	2,24E-07	2,34E-08	8,72E-08	0	6,43E-09	1,75E-08	0	-1,09E-08
HTP-c	CTUh	2,05E-08	9,62E-09	3,41E-09	7,49E-09	0	7,07E-10	3,55E-09	0	-3,87E-10
HTP-nc	CTUh	1,03E-07	7,26E-08	4,09E-09	2,58E-08	0	8,48E-10	4,08E-08	0	-4,56E-09
IR	kBq U-235 eqv.	4,47E-01	2,76E-01	7,33E-03	1,64E-01	0	1,82E-03	5,61E-03	0	-6,16E-02
SQP	Pt	3,86E+02	3,54E+02	2,83E+00	2,88E+01	0	8,42E-01	1,28E+00	0	-9,64E+00

ETP-fw=Ecotoxicity, freshwater (ETP-fw) | PM=Particulate Matter (PM) | HTP-c=Human toxicity, cancer (HTP-c) | HTP-nc=Human toxicity, non-cancer (HTP-nc) | IR=Ionising radiation, human health (IR) | SQP=Land use (SQP)

KLASSIFIZIERUNG VON EINSCHRÄNKUNGSHINWEISEN FÜR DIE DEKLARATION VON KERN- UND ZUSATZUMWELTWIRKUNGSINDIKATOREN

ILCD-Klassifizierung	Indikator	Haftungsausschluss	
ILCD-Typ / Stufe 1	Treibhauspotenzial (GWP)	Keine	_
	Potenzial des Abbaus der stratosphärischen Ozonschicht (ODP)	Keine	
	Potenzielles Auftreten von Krankheiten aufgrund von Feinstaubemissionen (PM)	Keine	
ILCD-Typ / Stufe 2	Versauerungspotenzial, kumulierte Überschreitung (AP)	Keine	_
	Eutrophierungspotenzial, in das Süßwasser gelangende Nährstoffanteile (EP-freshwater)	Keine	
	Eutrophierungspotenzial, in das Salzwasser gelangende Nährstoffanteile (EP-marine)	Keine	_
	Eutrophierungspotenzial, kumulierte Überschreitung (EP-terrestrial)	Keine	

	Troposphärisches Ozonbildungspotenzial (POCP)	Keine	
	Potenzielle Wirkung durch Exposition des Menschen mit U235 (IRP)	1	
ILCD-Typ / Stufe 3	Potenzial für die Verknappung von abiotischen Ressourcen für nicht fossile Ressourcen (ADP-	2	_
	minerals&metals)		
	Potenzial für die Verknappung von abiotischen Ressourcen für fossile Ressourcen (ADP-fossil)	2	
	Wasser-Entzugspotenzial (Benutzer), entzugsgewichteter Wasserverbrauch	2	
	(WDP)		
	Potenzielle Toxizitätsvergleichseinheit für Ökosysteme (ETP-fw)	2	
	Potenzielle Toxizitätsvergleichseinheit für den Menschen (HTP-c)	2	
	Potenzielle Toxizitätsvergleichseinheit für den Menschen (HTP-nc)	2	
	Potenzieller Bodenqualitätsindex (SQP)	2	_

Einschränkungshinweis 1 - Diese Wirkungskategorie befasst sich hauptsächlich mit den möglichen Auswirkungen niedrig dosierter ionisierender Strahlung auf die menschliche Gesundheit durch m Zusammenhang mit dem Kernbrennstoffkreislauf. Sie berücksichtigt nicht die Auswirkungen möglicher nuklearer Unfälle, beruflicher Exposition oder der Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Potenzielle ionisierende Strahlung aus dem Boden, aus Radon und aus einigen Baumaterialien wird ebenfalls nicht von diesem Indikator erfasst.

Einschränkungshinweis 2 - Die Ergebnisse dieses Umweltauswirkungsindikators sind mit Vorsicht zu verwenden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder nur begrenzte Erfahrungen mit dem Indikator vorliegen.

5.4 INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENVERBRAUCHS UND UMWELTINFORMATIONEN AUF DER GRUNDLAGE DER SACHBILANZ (LCI) PARAMETER ZUR BESCHREIBUNG DES RESSOURCENEINSATZES PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
PERE	MJ	1,31E+02	1,14E+02	1,60E-01	1,74E+01	0	2,41E-02	8,48E-02	0	-1,51E+01
PERM	MJ	0	0	0	0	0	0	0	0	0
PERT	MJ	1,31E+02	1,14E+02	1,60E-01	1,74E+01	0	2,41E-02	8,48E-02	0	-1,51E+01
PENRE	MJ	1,64E+02	1,18E+02	6,71E+00	3,98E+01	0	1,42E+00	2,50E+00	0	-3,27E+01
PENRM	MJ	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,64E+02	1,18E+02	6,71E+00	3,98E+01	0	1,42E+00	2,50E+00	0	-3,27E+01
SM	kg	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m3	2,06E-01	1,81E-01	8,84E-04	2,47E-02	0	1,94E-04	7,58E-03	0	-4,89E-03

PERE=renewable primary energy ex. raw materials | PERM=renewable primary energy used as raw materials | PERT=renewable primary energy ex. raw

materials | **PENRM**=non-renewable primary energy used as raw materials | **PENRT**=non-renewable primary energy total | **SM**=use of secondary material | **RSF**=use of renewable secondary fuels | **NRSF**=use of non-renewable secondary fuels | **FW**=use of net fresh water

ANDERE UMWELTINFORMATIONEN ZUR BESCHREIBUNG VON ABFALLKATEGORIEN PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
HWD	kg	3,29E-01	1,73E-01	9,72E-03	1,46E-01	0	1,38E-03	2,77E-01	0	-1,77E-08
NHWD	kg	6,96E+00	2,48E-01	0,00E+00	6,71E+00	0	0	0	0	1,29E-01
RWD	kg	1,48E-03	1,48E-03	0,00E+00	2,38E-07	0	0	0	0	-7,88E-04

HWD=hazardous waste disposed | NHWD=non-hazardous waste disposed | RWD=radioactive waste disposed

UMWELTINFORMATIONEN ZUR BESCHREIBUNG VON OUTPUT-FLÜSSEN PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT)

Abkürzung	Einheit	A1-A3	A1	A2	А3	C1	C2	C3	C4	D
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	2,83E-02	0	0	0	0	0
MER	kg	0	0	0	0	0	0	6,95	0	0
EET	MJ	0	0	0	0	0	0	0	0	1,92E+01
EEE	MJ	0	0	0	0	0	0	0	0	1,02E+01

CRU=Components for re-use | MFR=Materials for recycling | MER=Materials for energy recovery | EET=Exported Energy Thermic | EEE=Exported Energy Electric

5.5 INFORMATIONEN ZUM BIOGENEN KOHLENSTOFFGEHALT PRO m² MIT EINER STÄRKE VON 4,5 CM (LACKIERT UND UNLACKIERT)

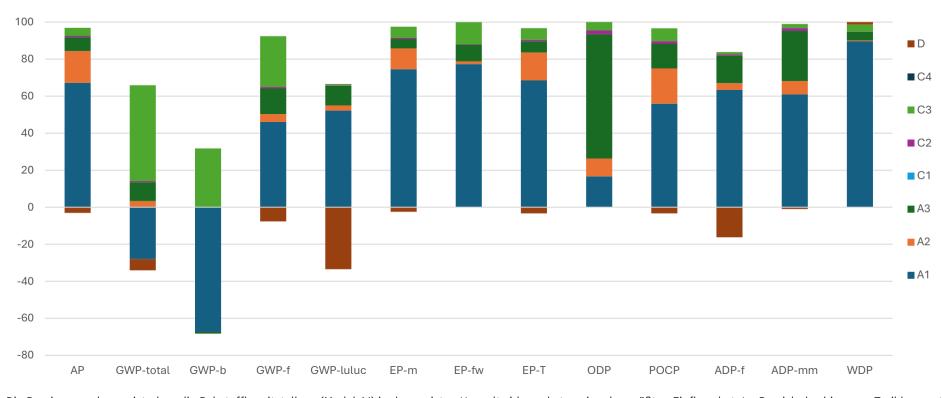
BIOGENER KOHLENSTOFFGEHALT

Die folgenden Informationen beschreiben den Gehalt an biogenem Kohlenstoff (in den Hauptbestandteilen) des Produkts am Werkstor pro m³:

Biogener Kohlenstoffgehalt	Menge	Einheit
Biogener Kohlenstoffgehalt im Produkt	2,12E+00	kg C
Biogener Kohlenstoffgehalt in der zugehörigen Verpackung	1,58E-02	kg C

AUFNAHME VON BIOGENEM KOHLENDIOXID

Die folgende Menge Kohlendioxidaufnahme wird berücksichtigt. Die damit verbundene Aufnahme und Freisetzung von Kohlendioxid in nachgelagerten Prozessen sind in dieser Zahl nicht berücksichtigt, obwohl sie in den vorgelegten Ergebnissen erscheint. Ein Kilogramm biogener Kohlenstoffgehalt entspricht 44/12 kg biogener Kohlendioxid-Aufnahme.


Aufnahme von biogenem Kohlendioxid	Menge	Einheit
Produkt	7,77E+00	kg CO₂ (biogen)
Verpackung	5,79E-02	kg CO ₂ (biogen)

6 Interpretation der Ergebnisse

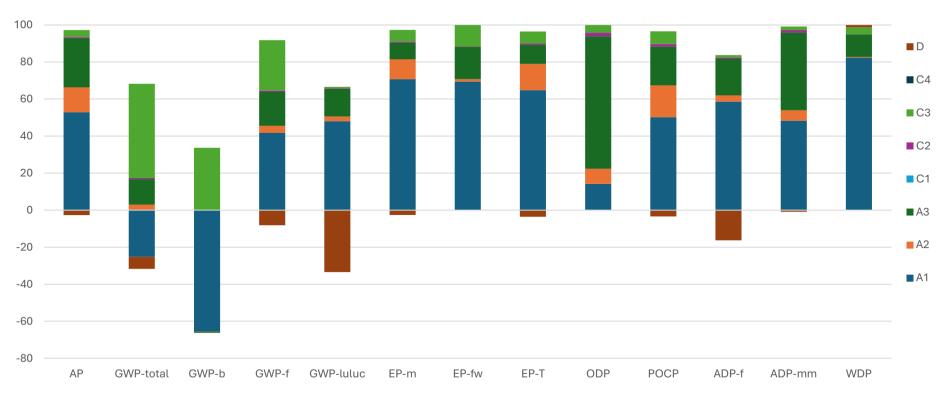
6.1 INNENRAUMAKUSTIKPLATTEN UNLACKIERT

Die Dominanzanalyse zeigt, dass die Rohstoffbereitstellung (Modul A1) in den meisten Umweltwirkungskategorien den größten Einfluss hat. Im Bereich des biogenen Treibhauspotenzials (biogenes GWP) entsteht in A1 ein deutlich negativer Wert (Kohlenstoffsenke) durch die Aufnahme von biogenem CO₂ in den Rohstoffen Hanf und Flachs.

Dem gegenüber steht ein hoher fossiler CO₂-Ausstoß in A1, der hauptsächlich auf die Herstellung der Biocfaser zurückzuführen ist. Dadurch ist das gesamte GWP gesamt in A1 zwar negativ durch den biogenen Anteil, aber das fossile GWP hebt diesen Effekt teilweise auf.

Interessanterweise ist das gesamte GWP in Modul C3 (End-of-Life-Verbrennung) höher als in A1. Die Verbrennung in C3 verursacht sowohl bei biogenem als auch bei fossilem CO₂ den zweitgrößten Beitrag zum GWP. Dies spiegelt die Emissionen, die bei der energetischen Verwertung des Lärmschutzabsorbers entstehen wider.

Für das Ozonabbaupotenzial (ODP) ist die Produktion (A3) der dominierende Einflussfaktor, was auf den Einsatz von Erdgas zur Wärmeerzeugung im Produktionsprozess zurückzuführen ist.


Transport (A2) und Produktion (A3) folgen in den meisten Kategorien als zweit- bis drittstärkste Beiträge, insbesondere durch den Rohstoff- und Materialtransport sowie die Verarbeitungsschritte.

Diese Ergebnisse verdeutlichen, dass sowohl die Wahl und Verarbeitung der Rohstoffe als auch die Behandlung am Lebensende (Verbrennung) wesentliche Hebel für die Reduktion der Umweltwirkungen der Innenraumakustikplatte darstellen.

6.2 INNENRAUMAKUSTIKPLATTEN LACKIERT

Die Dominanzanalyse zeigt, dass die Rohstoffbereitstellung (Modul A1) in den meisten Umweltwirkungskategorien den größten Einfluss hat. Im Bereich des biogenen Treibhauspotenzials (biogenes GWP) entsteht in A1 ein deutlich negativer Wert (Kohlenstoffsenke) durch die Aufnahme von biogenem CO₂ in den Rohstoffen Hanf und Flachs.

Dem gegenüber steht ein hoher fossiler CO₂-Ausstoß in A1, der hauptsächlich auf die Herstellung der Biocfaser zurückzuführen ist. Dadurch ist das gesamte GWP gesamt in A1 zwar negativ durch den biogenen Anteil, aber das fossile GWP hebt diesen Effekt teilweise auf.

Interessanterweise ist das gesamte GWP in Modul C3 (End-of-Life-Verbrennung) höher als in A1. Die Verbrennung in C3 verursacht sowohl bei biogenem als auch bei fossilem CO₂ den zweitgrößten Beitrag zum GWP. Dies spiegelt die Emissionen, die bei der energetischen Verwertung des Lärmschutzabsorbers entstehen wider.

Für das Ozonabbaupotenzial (ODP) ist die Produktion (A3) der dominierende Einflussfaktor, was auf den Einsatz von Erdgas zur Wärmeerzeugung im Produktionsprozess zurückzuführen ist.

Transport (A2) und Produktion (A3) folgen in den meisten Kategorien als zweit- bis drittstärkste Beiträge, insbesondere durch den Rohstoff- und Materialtransport sowie die Verarbeitungsschritte.

Diese Ergebnisse verdeutlichen, dass sowohl die Wahl und Verarbeitung der Rohstoffe als auch die Behandlung am Lebensende (Verbrennung) wesentliche Hebel für die Reduktion der Umweltwirkungen der Innenraumakustikplatte darstellen

7 Referenzen

ISO 14040

ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework: EN ISO 14040:2006

ISO 14044

ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines: EN ISO 14044:2006

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804+A2

EN 15804+A2: 2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

DIN EN 13501-1

DIN EN 13501-1: Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten -Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten

Kiwa-Ecobility Experten (Kiwa-EE)

General Product Category Rules - Version 2.1, 2022-02-14

Hintergrund-Datenbank

ecoinvent+3.11+integrated_CUP2025.1

GaBiDB 2025.1

Anhang B1

Programm für Umweltinformationen nach EN 15804 / ISO 21630 von Kiwa-Ecobility Experts. Programmbetrieb, u.a. in Zusammenarbeit mit den notifizierten Stellen der Kiwa-Gruppe

8 Kontaktinformationen

Herausgeber	Programmbetrieb	Deklarationsinhaber
kiwa Ecobility Experts	kiwa Ecobility Experts	Naporo
Kiwa-Ecobility Experts	Kiwa-Ecobility Experts	Naporo Klima Dämmstoff GmbH
Wattstraße 11-13	Wattstraße 11-13	Auggenthal 158,
13355 Berlin, DE	13355 Berlin, DE	2054 Haugsdorf, AT
E-Mail:	E-Mail:	E-Mail:
DE.Ecobility.Experts@kiwa.com	DE.Ecobility.Experts@kiwa.com	office@naporo.com
Website:	Website:	Website:
https://www.kiwa.com/de/en/themes/ecobility-experts/ecobility-experts-epd-program/	https://www.kiwa.com/de/en/themes/ecobility-experts/ecobility-experts-epd-program/	https://www.naporo.com/

Kiwa-Ecobility Experts ist etabliertes Mitglied der

